Installation¶
With pip¶
Install HTRflow with pip:
Requirements:
- Python >=3.10 and <3.13 (Python 3.10 is required for OpenMMLab)
- With GPU: CUDA >=11.8 (required due to PyTorch 2.0, can still run on CPU)
Verify the installation of HTRflow with htrflow --help
. If the installation was successful, the following message is shown:
Usage: htrflow [OPTIONS] COMMAND [ARGS]...
CLI inferface for htrflow
â•- Options ----------------------------------------------------â•®
│ --help Show this message and exit. │
╰--------------------------------------------------------------╯
â•- Commands ---------------------------------------------------â•®
│ evaluate Evaluate HTR transcriptions against ground truth │
│ pipeline Run a HTRflow pipeline │
╰--------------------------------------------------------------╯
Great! Read Quickstart to learn to use the htrflow pipeline
command.
From source¶
Requirements:
- uv or pip
- Python 3.10
- With GPU: CUDA >=11.8 (required due to PyTorch 2.0, can still run on CPU)
Clone this repository and run:
This will install the HTRflow package in a virtual environment.Docker¶
This guide explains how to run HTRflow using Docker Compose, ensuring a consistent environment and simplifying dependency management. Follow the instructions below to set up and run the application using Docker.
HTRflow on Docker hub:
Prerequisites¶
- Docker: Install Docker from the official website.
- Docker Compose: Usually included with Docker installations. Verify by running
docker-compose --version
. - NVIDIA GPU (Optional): If you plan to use GPU acceleration, ensure you have an NVIDIA GPU and the NVIDIA Container Toolkit installed.
Docker compose configuration¶
The docker-compose.yml
file defines the services, configurations, and volume mappings needed to run HTRflow.
version: "3.8"
services:
htrflow:
image: docker/htrflow.dockerfile
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
command:
[
"/bin/sh",
"-c",
"htrflow pipeline pipeline/demo.yaml input --logfile logs/htrflow/htrflow.log",
]
volumes:
- ./examples/images/pages:/app/input
- ./output-volume:/app/outputs
- ./logs-volume:/app/logs
- ./examples/pipelines:/app/pipeline
- ./.cache:/app/models
Volume mappings¶
volumes:
- ./examples/images/pages:/app/input # Input folder
- ./output-volume:/app/outputs # Output folder
- ./logs-volume:/app/logs # Logs folder
- ./examples/pipelines:/app/pipeline # Pipeline configuration files
- ./.cache:/app/models # Models cache
./examples/images/pages:/app/input
: Maps your localexamples/images/pages
directory to/app/input
inside the container. This is where HTRflow reads input images../output-volume:/app/outputs
: Maps to/app/outputs
inside the container for output files../logs-volume:/app/logs
: Maps to/app/logs
inside the container for application logs../examples/pipelines:/app/pipeline
: Provides pipeline configuration files to the container../.cache:/app/models
: Shares the models cache to avoid re-downloading.
Setup instructions¶
1. Create necessary directories¶
Before running the Docker container, create the directories that will be used as volumes:
This command creates:
output-volume
: Stores output files.logs-volume
: Stores log files..cache
: Caches models and data.
2. Build and run the Docker container¶
Use Docker Compose to build the image and start the container:
--build
: Forces a rebuild of the Docker image.- Docker Compose uses
docker-compose.yml
to set up the service and volumes.
3. Stop the container¶
To stop the Docker container and remove resources:
--rmi all
: Removes all images used by services.